

Dependable Autonomous Vehicle Architectures

Prof. Paul Pop, DTU Compute Coordinator of the Nordic University Hub on Industrial IoT

Some slides have been reused with permission from Intel and TTTech

10 October 2020 DTU Centre for Collabor

DTU Centre for Collaborative Autonomous Systems

Outline

- Evolution of vehicle electronic platforms
- Dependability challenges: real-time and safety-critical
- Example configuration problem: mapping and scheduling
- Example research projects at DTU Compute

Increasing complexity (automotive software)

Complexity drive • Increasing com • More and more • Rising liability	rs nplexity of functions e distributed development risks, such as security an	d safety	Electric powertrain Complexity	Mobility services Autonomous driving Brake-by-wire Steer-by-wire Connectivity, Vehicle2X Cloud computing 5G mobile communication Fuel-cell technology Laser-sourced lighting 3D displays	
			Lane assistant	Gesture HMI	
			Automatic stop and start	Ethernet/IP backbone	
		Hybrid powertrain	Emergency braking assistance	Electric powertrain	
		Electronic stability control	Head-up display	Adaptive cruise control	
		Active body control	Electronic brake control	Lane assistant	
		Emergency calling	Remote diagnostics	Automatic stop and start	
		Electric power steering	Online software updates	Emergency braking assistance	
	Gearbox control	FlexRay	AUTOSAR	Head-up display	
	Traction control	Gearbox control	Hybrid powertrain	Electronic braking control	
Electronic fuel	CAN	Traction control	Electronic stability control	Remote diagnostics	
injection	Antilock brakes	CAN bus	Active body control	AUTOSAR	
Antilock brakes	Electronic fuel injection				
1975	1985	1995	2005	2015	2025

6 levels of autonomous driving

	No Automation	Driver Assistance	L2 Partial Automation	L3 Conditional Automation	L4 High Automation	L5 Full Automation
DRIVER	In charge of all the driving	Must do all the driving, but with some basic help in some situations	Must stay fully alert even when vehicle assumes some basic driving tasks	Must be always ready to take over within a specified period of time when the self-driving systems are unable to continue	Can be a passenger who, with notice, can take over driving when the self-driving systems are unable to continue	No human driver required-steering wheel optional-everyone can be a passenger in an L5 vehicle
VEHIC	Responds only to inputs from the driver, but can provide warnings about the environment	Can provide basic help, such as automatic emergency braking or lane keep support	Can automatically steer, accelerate, and brake in limited situations	Can take full control over steering, acceleration, and braking under certain conditions	Can assume all driving tasks under nearly all conditions without any driver attention	In charge of all the driving and can operate in all environments without need for human intervention
E.						(((6])))

Automotive: increased functionality due to increased autonomy

Improvements on Sophisticated Automotive Advanced Drivers Assistance Systems (ADAS) like:

Present: Automotive electronic systems

- LIN Local interconnect network
- LIN Local Interconnect network
- MOST Media-oriented systems transport

Over 100 ECUs, interconnected in several networks

ECU—Electronic Control Unit (processor, memory, communication card)

DTU

DTU

Autonomous vehicles architecture challenges

- Rapid growth of software functionality and the necessary compute performance cannot be addressed with current electronics architecture and ECUs
 - autonomous driving
 - connectivity
 - infotainment
 - electrification & hybrids
 - new mobility
- Too many ECU's with too little processing power and memory

... to more integration

DTU

Long Range Radar

Lidar

~1 @100 mbps each

ADAS

Example sensors needed for ADAS applications

Cameras

~5 @100 mbps each

Short/Medium

~4 @45 mbps each

 \mathbf{a}

Range Radar

Sensors deployed today

Environment camera

Ultrasound sensors

Radar

Front camera

Example hardware platform: RazorMotion

Processing Resources:

1x Renesas RH850P/1H-C (ASIL D MCU with lockstep cores @ 240MHz) 2x Renesas R-Car H3 (ASIL B SoC with 4x Cortex A57, 4x Cortex A53, 1x Cortex R7, 1x IMP-X5, 1x IMG GX6650 GPU)

Video Interfaces:

12 x camera inputs (GMSL) incl. remote supply (PoC) 2 x display outputs (FPD-Link III)

Communication Interfaces:

4x OABR 100BASE-T1 2 x FlexRay (A/B channel) – wakeup capable 2 x HS-CAN – wakeup capable 4 x CAN-FD 2 x LIN I/O Interfaces 2 x analog/digital inputs 2 x high side outputs 1 x sensor supply output (5V)

Example software platform: MotionWise

Heterogeneous multicore multi-System-on-Chip (SoC) platform featuring a variety of CPUs and GPUs running at different speeds

Interconnected through either a deterministic Ethernet backbone (TSN) or through PCIe

Using a variety of operating systems, depending on the criticality, a safetycritical middleware

Evolution of vehicular networks

- Why use networks in vehicles
 - Reduced Wiring Harness \rightarrow Reduced weight and cabling costs
 - Reduce overall costs by using standardized chips
 - Reduce risks of binding to one silicon/solution vendor
 - Unified solution for different application areas (e.g. Infotainment, Power Train, Driver Assistance, ...)

Infotainment and Connectivity

DAIMLER

Picture Sources: IEEE 802.3 RTPGE SG

DTU

Network convergence: IEEE Time-Sensitive Networking

Principles Integration

Multiple traffic classes share the network, supporting applications with mixed-criticality requirements **Separation:** Virtual links separate different criticalities

Switched Deterministic Ethernet (TSN) in Automotive

DTU

Configuration challenge: mapping & scheduling

25th IEEE International Conference on Emerging Technologies and Factory Automation September 08-11, 2020

EMERGING TECHNOLOGIES BEST PAPER AWARD

is presented, on behalf of the Program Committee, to

Shane D. McLean, Silviu S. Craciunas, Emil Alexander Juul Hansen, Paul Pop

Mapping and Scheduling Automotive Applications on **ADAS Platforms using Metaheuristics**

Thilo Sauter General Co-Chair Francisco Vasques General Co-Chair

Lucia Lo Bello Program Co-Chair

Valeriy Vyatkin Program Co-Chair

ENABLE-S3—EU ECSEL, 2016-2019, 143 M€, 74 partners

Builds on GUARDEU ECSEL failed proposal 2014, 69 partners, >100 M€, WP leader, country coordinatorEMC2EU ECSEL AIPP project, 99 partners, 100 M€, WP leader and country coordinator

SafeCOP—ECSEL 2016-2019, 28 partners, 5 countries 11 M€ EU budget, 1,300 PMs

Builds on **EMC2** ECSEL AIPP project, 99 partners, 100 M€, WP leader and country coordinator **RECOMP** EU ARTEMIS, 41 partners from 9 countries, WP leader and country coordinator

National project: AgroRobottiFleet

DTU: dependable wireless communication

